392 - example on ratios
Example on Ratios
===============
If a/b = c/d = e/f , then show that
(a^3 + 2(c^2)e - 2 a(e^2)f ) ace
----------------------------------------- = ------
( b^4 + 2 (d^2) f - 3b(f^3) ) bdf
Let us take the following assumptiion
a/b = c/d = e/f = k
where , k is any constant which we assign it to the
ratios as a number equivalent to the ratios of these
Numbers
Now ,
a = bk , c = dk , e = fk
therefore ,
( (a^3)b+2(c^2)e - 3a(e^2)f )
-------------------------------------
( b^4 + 2(d^2)f - 3b(f^3) )
=
(b^4)(k^3) + 2(d^2)(k^2)(fk) - 3(bk)(f^2)(k^2)f
-------------------------------------------------------------------
b^4 + 2(d^2)f - 3(b)(f^3)
=(k^3)
= k*k*k
= (a/b)*(c/d)*(e/f)
= ace / bdf
No comments:
Post a Comment